x=20(cos(t)+cos(5t)5),y=20(sin(t)−sin(5t)5),t∈[0;2π]
x=4,4(cos(t)+cos(1,1t)1,1),y=4,4(sin(t)−sin(1,1t)1,1)t∈[0;20π]
x=24,8(cos(t)+cos(6,2t)6,2),y=24,8(sin(t)−sin(6,2t)6,2)t∈[0;10π]
x=8(cos(t)−cos(4t)4),y=8(sin(t)−sin(4t)4),t∈[0;2π]
x=6,2(cos(t)−cos(3,1t)3,1),y=6,2(sin(t)−sin(3,1t)3,1)t∈[0;20π]
x=13(cos(t)−cos(6,5t)6,5),y=13(sin(t)−sin(6,5t)6,5)t∈[0;4π]
x(t)=sin(t+π2),y(t)=sin(2t),t∈[0;2π]
x(t)=sin(3t+π2),y(t)=sin(2t),t∈[0;2π]
x(t)=sin(5t+π2),y(t)=sin(6t),t∈[0;2π]