Примеры графиков параметрических функций на плоскости
Гипоциклоиды #
\[
x = 20\Big(\cos(t) + \frac{\cos(5t)}{5}\Big), \quad
y = 20\Big(\sin(t) - \frac{\sin(5t)}{5}\Big), \quad
t \in [0; 2\pi]
\]
\[
x = 4,4\Big(\cos(t) + \frac{\cos(1,1t)}{1,1}\Big), \quad
y = 4,4\Big(\sin(t) - \frac{\sin(1,1t)}{1,1}\Big) \\
t \in [0; 20\pi]
\]
Эпициклоиды #
\[
x = 8\Big(\cos(t) - \frac{\cos(4t)}{4}\Big), \quad
y = 8\Big(\sin(t) - \frac{\sin(4t)}{4}\Big), \quad
t \in [0; 2\pi]
\]
\[
x = 6,2\Big(\cos(t) - \frac{\cos(3,1t)}{3,1}\Big), \quad
y = 6,2\Big(\sin(t) - \frac{\sin(3,1t)}{3,1}\Big) \\
t \in [0; 20\pi]
\]